

SOAP - A SECURE AND RELIABLE

CLIENT-SERVER COMMUNICATION FRAMEWORK

Marin Lungu, Dan – Ovidiu Andrei, Lucian - Florentin Barbulescu

University of Craiova, Faculty of Automation, Computers and Electronics,

Department of Computer Systems and Communication, Romania

Abstract: Data communication represents a key element within every client-server system

as it provides the means for all the elements to connect and work together. This

communication can be performed either by means of a proprietary protocol or by using a

standard one, each option having its advantages and disadvantages. However the

standardized protocols are more and more used in our days as it is easier to develop tools

and applications. The current paper tries to compare some of the standard communication

technologies with SOAP, the newest available on the market.

Keywords: networks, communication protocols, data transmissions

1. CLIENT - SERVER COMPUTING

Client/server computing is a phrase used to describe

a model for computer networking. This model offers

an efficient way to provide information and services

to many users. A network connection is only made

when information needs to be accessed by a user.

This lack of a continuous network connection

provides network efficiency. In client/server

computing, processes are divided between the client

and the server. This relationship is based on a series

of requests and responses.

•Client: Requests services or information from

another computer (the server computer).

•Server: Responds to the client's request by

sending the results of the request back to the client

computer.

In a client/server setting, the client computer runs a

software application called a client program while the

server computer runs a software application called a

server program.

Functions performed by the client program:

•Enables the user to send a request for information

to the server.

•Formats the request so that the server can

understand it.

•Formats the response from the server in a way that

the user can read.

Functions performed by the server program:

•Receives a request from a client and processes the

request.

•Responds by sending the requested information

back to the client.

The following diagram illustrates the relationship

between client and server computers. The client

requests information; the server processes the request

and sends a response back to the client

Fig. 1. Standard Client-server arhitecture. The client

requests information; the server processes the

request and sends a response back to the client.

In conclusion, client/server computing is a common

networking model which enables many users to

access information in an efficient manner. Generally,

the user's computer is called the client and the

machine that contains the information being accessed

is called the server. The client computer runs an

application called a client program. A client program

enables a user to send a request for information to the

server and read the results that the server sends back.

The server computer runs a server program which

processes requests and sends results back to the

client. The communication between the client and the

server is based on request-response protocols

2. DISTRIBUTED TECHNOLOGIES

There are several request/response based

communications technologies on the market today. It

is impossible to say that one of them is the best or the

worse, but is easy to highlight their strong and weak

points. The final decision in choosing a

communication techonology must be made based on

the specifications of the client-server system that

must be implemented. In this paper we wil cover

only five of those technologies: CORBA, DCOM,

Java/RMI, XML-RPC and SOAP.

2.1 CORBA

Common Object Request Broker Architecture relies

on a protocol called the Internet Inter-ORB Protocol

(IIOP) for remoting objects. Everything in the

CORBA architecture depends on an Object Request

Broker (ORB). The ORB acts as a central Object Bus

over which each CORBA object interacts

transparently with other CORBA objects located

either locally or remotely. Each CORBA server

object has an interface and exposes a set of methods.

To request a service, a CORBA client acquires an

object reference to a CORBA server object (Gopalan

1998).

The client can now make method calls on the object

reference as if the CORBA server object resided in

the client's address space. The ORB is responsible for

finding a CORBA object's implementation, preparing

it to receive requests, communicate requests to it and

carry the reply back to the client. A CORBA object

interacts with the ORB either through the ORB

interface or through an Object Adapter - either a

Basic Object Adapter (BOA) or a Portable Object

Adapter (POA).

Since CORBA is just a specification, it can be used

on diverse operating system platforms from

mainframes to UNIX boxes to Windows machines to

handheld devices as long as there is an ORB

implementation for that platform. Major ORB

vendors like Inprise have CORBA ORB

implementations through their VisiBroker product for

Windows, UNIX and mainframe platforms and Iona

through their Orbix product. (Gopalan 1998)

2.2 DCOM

Distributed Component Object Model which is often

called 'COM on the wire', supports remoting objects

by running on a protocol called the Object Remote

Procedure Call (ORPC). This ORPC layer is built on

top of DCE's RPC and interacts with COM's run-time

services. A DCOM server is a body of code that is

capable of serving up objects of a particular type at

runtime. Each DCOM server object can support

multiple interfaces each representing a different

behavior of the object.

A DCOM client calls into the exposed methods of a

DCOM server by acquiring a pointer to one of the

server object's interfaces. The client object then starts

calling the server object's exposed methods through

the acquired interface pointer as if the server object

resided in the client's address space. As specified by

COM, a server object's memory layout conforms to

the C++ vtable layout. Since the COM specification

is at the binary level it allows DCOM server

components to be written in diverse programming

languages like C++, Java, Object Pascal (Delphi),

Visual Basic and even COBOL. As long as a

platform supports COM services, DCOM can be used

on that platform.

DCOM is now heavily used on the Windows

platform. Companies like Software AG provide

COM service implementations through their EntireX

product for UNIX, Linux and mainframe platforms;

Digital for the Open VMS platform and Microsoft for

Windows and Solaris platforms. (Gopalan 1998)

2.3 Java/RMI

Remote Method Invocation relies on a protocol

called the Java Remote Method Protocol (JRMP).

Java relies heavily on Java Object Serialization,

which allows objects to be marshaled (or transmitted)

as a stream. Since Java Object Serialization is

specific to Java, both the Java/RMI server object and

the client object have to be written in Java.

 Each Java/RMI Server object defines an interface

which can be used to access the server object outside

of the current Java Virtual Machine(JVM) and on

another machine's JVM. The interface exposes a set

of methods which are indicative of the services

offered by the server object. For a client to locate a

server object for the first time, RMI depends on a

naming mechanism called an RMIRegistry that runs

on the Server machine and holds information about

available Server Objects.

A Java/RMI client acquires an object reference to a

Java/RMI server object by doing a lookup for a

Server Object reference and invokes methods on the

Server Object as if the Java/RMI server object

resided in the client's address space. Java/RMI server

objects are named using URLs and for a client to

acquire a server object reference, it should specify

the URL of the server object as you would with the

URL to a HTML page. Since Java/RMI relies on

Java, it can be used on diverse operating system

platforms from mainframes to UNIX boxes to

Windows machines to handheld devices as long as

there is a Java Virtual Machine (JVM)

implementation for that platform. In addition to

Javasoft and Microsoft, a lot of other companies have

announced Java Virtual Machine ports. (Gopalan

1998)

2.4 XML-RPC

EXtensible Markup Language - Remote Procedure

Call was created in 1998 by David Winer. Winer felt

that the ones already in use (DCOM, CORBA) were

not that suitable for the Internet. XML-RPC is a

specification and a set of implementations that allows

computers to communicate with each other and make

procedure calls over the Internet.

It works by encoding the RPC requests into XML

and then sending them over a standard HTTP

connection to the server.The server then decodes the

XML, executes the function and then sends the result

back to the client in XML. The client decodes the

XML and carries on executing as before. XML-RPC

is designed to be simple, it is easy to use, understand

and debug (as the RPC protocol is in XML this

makes network sessions are easier to debug). There

are XML-RPC implementations for most popular

programming languages and environments. XML-

RPC is basically a “remote procedure calling using

HTTP as the transport and XML as the encoding.

(Johnson 2001)

2.5 SOAP

Simple Object Access Protocol is an extension to the

XML-RPC. There are two different ways of

implementing RPCs which both rely on XML and

HTTP for their implementation. SOAP picks up from

where XML-RPC left off by implementing user-

defined data types and including the ability to specify

the recipient, message specific processing control

among other features.

XML-RPC consists of simple, easy to understand

requests and responses and allows a job to get done

with the minimum amount of complexity. SOAP, on

the other hand, requires attribute specification tags,

namespaces and other complexities, which mean that

there is an increase in the amount of overheads.

However, there is more information about the

messages being sent. In brief, SOAP is used

whenever complex user-defined data types are used

and it is required to specify how the message is to be

processed; otherwise for simple method calls and

standard data types XML-RPC can be used. (Rivera

2001)

3. TECHNOLOGIES COMPARISON

SOAP as described earlier on, is a wire protocol.

Therefore comparisons between CORBA and RMI

are not possible - they are architectures set up for

distribution technology. IIOP and JRMP are the wire

protocols for the two architectures. These can

therefore be compared to SOAP. DCOM’s protocol

ORPC could also be compared but future

development for this architecture has stopped due to

Microsoft’s adoption of SOAP. Having said that,

adoption of IIOP constricts you to using CORBA as

the architecture while JRMP constricts you to RMI.

Therefore in some aspects of comparison it is

possible to compare SOAP with CORBA and RMI.

It has been said that SOAP doesn’t address high level

object functions such as object activation, lifetime

management, polymorphism, bi-directional

communication or garbage collection. However

neither do JRMP or IIOP. The point of the wire

protocol is to transmit the object information in a

standard way. CORBA and RMI have layers above

the JRMP and IOP which do these high level object

functions. Therefore this implementation has been

left open to the developer to create or to use a vendor

based product which will include this functionality

with SOAP (provide a framework.)

It has also been said that SOAP is also stateless if it

binds to HTTP, it does not rely on previous requests.

Again we are talking about the higher layers doing

this work. Currently SOAP implementations do not

have a session mechanism to enable transactional

requests. Therefore huge amounts of data may need

to be continually transmitted. However steps are

going ahead to remedy this problem as even HTTP

has cookies to enable stateful transactions. CORBA,

RMI and DCOM all support stateful requests with

RMI giving the option to create stateless requests

3.1 Infrastructure Comparisons.

Heterogeneous Operating Systems/Language

Environment. In RMI/JRMP’s case Java Object

Serialisation is only specific to Java, which means

that both the client and the component object must be

written in Java. CORBA/IIOP can also function with

different hardware and software as long as the ORBs

are the same on the different machines. What is

encoded then decoded is interpreted as the same at

both end points. SOAP can function with different

hardware and software however it needs the higher

level interpretation of the XML to be the same. This

is paralleled with the ORBs in CORBA’s case.

However in SOAP’s case this can be avoided if

standard types are used. The mappings of these

primitive types are the same as it is in the

specification, if not then the libraries of the SOAP

implementation must be the same or compatible

Business Considerations: SOAP with HTTP

transport binding means that companies are familiar

with using HTTP. The business infrastructure built to

integrate the web and HTTP into the working place

can now be reused. CORBA and RMI require extra

infrastructure to be implemented.

Microsoft and IBM support SOAP. They are the

major players of the software developers which

means that other companies will adopt it. Therefore it

is an issue on whether interoperability with other

companies may also need to be addressed.

Companies also have to take into account the cost

involved in adopting certain distributed technologies

e.g. CORBA requires a licence whilst RMI is free.

With SOAP, there are free open source

implementations or pre-packaged software from

vendors. However, with the pre-packaged software

true interoperability between products from different

vendors may not be achieved due to proprietary

features.

Firewall filtering. The issue of firewalls has meant

that the use of RMI, CORBA has been restricted over

the Internet. Although ports can be set up for

transmission, dynamically changing these ports

means recompiling the program or a scope of ports

must be made open by the firewall. This requires the

firewalls at both ends of communication to be

configured in exactly the same way. There are

however some IIOP friendly firewalls or some

firewalls which do IIOP-HTTP tunnelling.

SOAP does not need such major changes to the

firewall or the network. It can run over the same

ports as web applications. SOAP messages call their

intent inside the HTTP header, so it is possible for

firewalls to filter based on this information. SOAP

server’s responsibility must check the HTTP header

with that in the headers and tags in the XML payload

otherwise it is rejected. Firewalls can easily

recognise SOAP packets based on their Content Type

and can filter based on the interface and method

name exposed via the HTTP headers. IIOP and

JRMP are encoded as bit streams so it is difficult to

decode to determine their intent.

The SOAP specification states that additional HTTP

headers must be introduced, which makes sure that

certain headers are recognised and understood before

processing the request. This is done using M-POST

requests. The specification requires first to

implement the request using MPOST then if it gets

the response “501 not implemented” or “510 Not

extended” it could try again using normal POST.

Therefore SOAP clients send this in, only when it

fails use normal POST

Integration with other distributed technologies. The

main problem of the distributed technologies is that

they are incompatible with each other e.g. a DCOM

based system cannot talk to an RMI based system.

Sun have tried to tackle that problem and RMI is now

compatible with both IIOP and JRMP.

SOAP can be used as the lower common layer for the

architecture. A certain communication language can

be encoded into SOAP and decoded into appropriate

communication language at the receiver end.

Therefore it can help different technologies to

communicate without having too mush of an impact

on the architecture already set up on the systems.

3.2 Functional Comparisons

Serialisation of Objects. SOAP can support

serialisable objects by converting it into a XML

element. It has the same functionality as IIOP and

JRMP in this sense. Toolkits are available to hide the

SOAP implementation using keywords in the

language and can be used to convert certain function

calls from a certain language into SOAP and parse it

back. The type of function calls, datatypes of the

parameters supported vary with each SOAP

implementation. Therefore one which uses HTTP and

another using SMTP would both conform to the

SOAP standard but would not be able to

communicate with each other. Complying with the

standard does not mean that they will all interoperate

even though this is a goal of some toolkit makers

Performance. SOAP currently has a lack of

performance due to the requirement to create, parse

and transport XML. Even more so when using

unicode. It uses a lot of memory compared to the

amount of actual data in the document and is a time

consuming task. Transmitting a lot of data may be

unsatisfactory in a high throughput situation and also

will produce a high overhead as the actual

information is only a small portion of the total data.

IIOP is very fast because it permits direct client

server communication once an object reference is

obtained. JRMP’s performance has been refined

since it caters for only one language. Both of these

protocols are sent as bit streams as opposed to text

and are less descriptive. Therefore the decoding of

the bit stream will always be faster.

Programming Usability. Given that the IT

community has been exposed extensively to XML

and HTTP compared to the few with specialized

knowledge with using CORBA, RMI and DCOM,

more people have the basic knowledge needed

already to implement and understand SOAP.

With RMI and CORBA, there is compile time type

checking of the parameters of the function available,

however there is no such feature with SOAP; there

will not be a type error until the XML message is

validated on the server at runtime. The nature in

which it is binded to HTTP or other protocols means

that there is an independence from the client to the

server, it is loosely coupled. Unlike JRMP and IIOP,

using SOAP means that the server can be replaced

with a new one without the client knowing about it.

However, more runtime checking and asynchronous

communication is needed. Runtime exceptions in

RMI are wrapped in remote exception therefore some

knowledge in the calling application of an RMI

object is required for diagnosis of errors. This means

there is a lack of information on what went wrong.

SOAP requires more code than other distributed

technologies but it is also human readable if

intercepted unlike IIOP and JRMP which is sent as

serialised data and would just be incomprehensible.

Therefore SOAP messages are easier to debug for the

programmer. Whether readable text is of great

benefit, when it will encrypted over the Internet

anyway means that this advantage is lost.

Security. SOAP security has yet to be fully

addressed. It was thought that HTTP security would

just be used. HTTP provides several ways to

authenticate which user is making the SOAP call, but

does not when it needs to be propagated from

different transports (like HTTP and SMTP). There is

also a need to secure the entire SOAP message

including the SOAP headers and the SOAP body for

transmission over the Internet. This is done using

XML security tags. A security layer needs to be

added on top of SOAP for this to be implemented.

IBM and Microsoft have proposed an open security

proposal: to extend SOAP with attachments, security

extension and digital signatures thus adding security

to protocol level.

IIOP leaves this implementation to be done via the

ORB and JRMP also leaves this to be done by its

interface layer in RMI. RMI has built in security

features already due to Java.

4. SOAP – THE BEST CHOICE IN MOST CASES

As it was presented earlier in this paper choosing the

best communication framework is strictly related to

the needs of the implemented client-server system.

Usualy the choosen technology must be secure,

reliable, fast and possibly platform independent.

From the technologies presented SOAP comply to all

of those four requirements.

The security issue was a problem for SOAP. Initialy

this protocol wasn't designed to contain built-in

security. When SOAP was first created the security

issue was left to be implemented by the transport

protocol. That is why SOAP can be used over

HTTPS and thus the security of this protocol will be

used by SOAP. But this can only ensure that during

the transport the informations ent can not be altered

and not that the request or response come from the

correct entity. It was cleared that some kind of

security must be added to the protocol itself. This is

where the fact that SOAP is based on XML come to

the rescue. XML Signature and XML encryption are

two innovations added to XML.. By exchanging

SOAP messages that contain signed XML bodies the

client and the server can check if the data transfered

between them come indead from the right source and

was not altered. By encrypting the XML the data can

only be read the be intended target leaving no room

for message interception by unauthorized entities.

About the reliability of SOAP there is nothing that

can be said. SOAP is based on XML. XML is known

for it's reliability. Incomplete data will be detected

immediately because of the strong typed structure of

XML. Also, the data corruption can be signaled in

this way. There can still be a problem related to data

corruption: The XML parser can not detect

corruption in the data between two XML tags. This is

not the case when XML signature is used.

The speed of transfer is indeed a problem for SOAP

especialy when binary data neads to be transfered.

Usualy this data is serialized into a plain text

representation (usualy BASE 64) which leads to

messages about 50% bigger that the corresponding

binary data streams. The solution found here was to

store the binary files on servers and to use only

references to them in exchanged SOAP messages.

XML explicitly supports referencing external opaque

data as external unparsed general entities. Considered

a fairly esoteric feature of XML, unparsed entities are

not widely used. The primary obstacle to using

unparsed entities is their heavy reliance on DTDs,

which impedes modularity as well as use of XML

namespaces. They are also not available to SOAP,

which explicitly prohibits document type declarations

in messages. A more common way to reference

external opaque data is to simply use a URI as an

element or attribute value. (Bosworth et al. 2003)

The last issue, the platform independence, is passed

very easy by SOAP because of the platform

independence of the two technologies it uses (XML

for data representation and HTTP for network

transport). In the last years SOAP is more and more

use especialy when a communication between

different types of systems is neaded.

In conclusion SOAP offers the most advantages over

other similar communication protocols. It’s easily

understandable structure, its platform independence

and the huge support it has from some of the major

actors of the computer market makes SOAP the best

choice when a communication framework is neaded.

REFERENCES

Bosworth, A, D. Box, M. Gudgin,M. Nottingham, D.

Orchard and J. Schlimmer (2003): XML, SOAP,

and Binary Data.

Gopalan, S. R. (1998). A Detailed Comparison of

CORBA, DCOM and Java/RMI

Johnson, J (2001): Using XML-RPC for Web

services.

Network Solutiuon CO. (1996): What is client/server

computing?.

Rivera, G (2001): Some considerations on SOAP

